3.3 \(\int x^3 (a+b \tan ^{-1}(c x)) \, dx\)

Optimal. Leaf size=48 \[ \frac{1}{4} x^4 \left (a+b \tan ^{-1}(c x)\right )+\frac{b x}{4 c^3}-\frac{b \tan ^{-1}(c x)}{4 c^4}-\frac{b x^3}{12 c} \]

[Out]

(b*x)/(4*c^3) - (b*x^3)/(12*c) - (b*ArcTan[c*x])/(4*c^4) + (x^4*(a + b*ArcTan[c*x]))/4

________________________________________________________________________________________

Rubi [A]  time = 0.0271138, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {4852, 302, 203} \[ \frac{1}{4} x^4 \left (a+b \tan ^{-1}(c x)\right )+\frac{b x}{4 c^3}-\frac{b \tan ^{-1}(c x)}{4 c^4}-\frac{b x^3}{12 c} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*ArcTan[c*x]),x]

[Out]

(b*x)/(4*c^3) - (b*x^3)/(12*c) - (b*ArcTan[c*x])/(4*c^4) + (x^4*(a + b*ArcTan[c*x]))/4

Rule 4852

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
n[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTan[c*x])^(p - 1))/(1 + c^
2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int x^3 \left (a+b \tan ^{-1}(c x)\right ) \, dx &=\frac{1}{4} x^4 \left (a+b \tan ^{-1}(c x)\right )-\frac{1}{4} (b c) \int \frac{x^4}{1+c^2 x^2} \, dx\\ &=\frac{1}{4} x^4 \left (a+b \tan ^{-1}(c x)\right )-\frac{1}{4} (b c) \int \left (-\frac{1}{c^4}+\frac{x^2}{c^2}+\frac{1}{c^4 \left (1+c^2 x^2\right )}\right ) \, dx\\ &=\frac{b x}{4 c^3}-\frac{b x^3}{12 c}+\frac{1}{4} x^4 \left (a+b \tan ^{-1}(c x)\right )-\frac{b \int \frac{1}{1+c^2 x^2} \, dx}{4 c^3}\\ &=\frac{b x}{4 c^3}-\frac{b x^3}{12 c}-\frac{b \tan ^{-1}(c x)}{4 c^4}+\frac{1}{4} x^4 \left (a+b \tan ^{-1}(c x)\right )\\ \end{align*}

Mathematica [A]  time = 0.0026207, size = 53, normalized size = 1.1 \[ \frac{a x^4}{4}+\frac{b x}{4 c^3}-\frac{b \tan ^{-1}(c x)}{4 c^4}-\frac{b x^3}{12 c}+\frac{1}{4} b x^4 \tan ^{-1}(c x) \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*ArcTan[c*x]),x]

[Out]

(b*x)/(4*c^3) - (b*x^3)/(12*c) + (a*x^4)/4 - (b*ArcTan[c*x])/(4*c^4) + (b*x^4*ArcTan[c*x])/4

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 44, normalized size = 0.9 \begin{align*}{\frac{{x}^{4}a}{4}}+{\frac{{x}^{4}b\arctan \left ( cx \right ) }{4}}-{\frac{b{x}^{3}}{12\,c}}+{\frac{bx}{4\,{c}^{3}}}-{\frac{b\arctan \left ( cx \right ) }{4\,{c}^{4}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arctan(c*x)),x)

[Out]

1/4*x^4*a+1/4*x^4*b*arctan(c*x)-1/12*b*x^3/c+1/4*b*x/c^3-1/4*b*arctan(c*x)/c^4

________________________________________________________________________________________

Maxima [A]  time = 1.44273, size = 65, normalized size = 1.35 \begin{align*} \frac{1}{4} \, a x^{4} + \frac{1}{12} \,{\left (3 \, x^{4} \arctan \left (c x\right ) - c{\left (\frac{c^{2} x^{3} - 3 \, x}{c^{4}} + \frac{3 \, \arctan \left (c x\right )}{c^{5}}\right )}\right )} b \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arctan(c*x)),x, algorithm="maxima")

[Out]

1/4*a*x^4 + 1/12*(3*x^4*arctan(c*x) - c*((c^2*x^3 - 3*x)/c^4 + 3*arctan(c*x)/c^5))*b

________________________________________________________________________________________

Fricas [A]  time = 2.44174, size = 105, normalized size = 2.19 \begin{align*} \frac{3 \, a c^{4} x^{4} - b c^{3} x^{3} + 3 \, b c x + 3 \,{\left (b c^{4} x^{4} - b\right )} \arctan \left (c x\right )}{12 \, c^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arctan(c*x)),x, algorithm="fricas")

[Out]

1/12*(3*a*c^4*x^4 - b*c^3*x^3 + 3*b*c*x + 3*(b*c^4*x^4 - b)*arctan(c*x))/c^4

________________________________________________________________________________________

Sympy [A]  time = 1.10828, size = 53, normalized size = 1.1 \begin{align*} \begin{cases} \frac{a x^{4}}{4} + \frac{b x^{4} \operatorname{atan}{\left (c x \right )}}{4} - \frac{b x^{3}}{12 c} + \frac{b x}{4 c^{3}} - \frac{b \operatorname{atan}{\left (c x \right )}}{4 c^{4}} & \text{for}\: c \neq 0 \\\frac{a x^{4}}{4} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*atan(c*x)),x)

[Out]

Piecewise((a*x**4/4 + b*x**4*atan(c*x)/4 - b*x**3/(12*c) + b*x/(4*c**3) - b*atan(c*x)/(4*c**4), Ne(c, 0)), (a*
x**4/4, True))

________________________________________________________________________________________

Giac [A]  time = 1.35318, size = 66, normalized size = 1.38 \begin{align*} \frac{3 \, b c^{4} x^{4} \arctan \left (c x\right ) + 3 \, a c^{4} x^{4} - b c^{3} x^{3} + 3 \, b c x - 3 \, b \arctan \left (c x\right )}{12 \, c^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arctan(c*x)),x, algorithm="giac")

[Out]

1/12*(3*b*c^4*x^4*arctan(c*x) + 3*a*c^4*x^4 - b*c^3*x^3 + 3*b*c*x - 3*b*arctan(c*x))/c^4